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Role of Cytochrome P-450 and Related
Enzymes in the Pulmonary Metabolism of
Xenobiotics
by Richard M. Philpot* and Brian R. Smith*

The lung metabolizes a wide variety of xenobiotics and, in the process, forms products that may be more
or less toxic than the parent compound. The consequence of metabolism, activation or detoxication, is a
function of the nature of the substrate and of the characteristics and concentrations of the enzymes
involved. As a result, the biotransformation of xenobiotics can lead to their excretion or to the formation
of reactive products that produce deleterious effects by binding covalently to tissue macromolecules.
Among the enzymes that metabolize xenobiotics, those associated with the cytochrome P-450-dependent
monooxygenase system are probably the most important. The route by which a given substrate is metabol-
ized in a tissue or cell is, to a great extent, determined by the types and concentrations of cytochrome
P-450 isozymes present. We are just beginning to understand the distribution of these enzymes in lung
and to appreciate the species and cellular differences that exist.

Introduction
The metabolism of xenobiotics in the lung, as in other

organs, generally results in the formation of products
that can be processed via the excretory pathways. In
this way, the lung contributes to the clearance of drugs
and other foreign chemicals from the body. In addition
to aiding in clearance, and probably more important,
metabolism can greatly alter the toxic properties of
many xenobiotics. In cases where toxicity is decreased,
the advantages of these metabolic systems are obvious
and we may optimistically, if somewhat naively, employ
the phrase "detoxication pathways!" However, mod-
ification of numerous innocuous compounds by the same
enzyme systems can produce highly reactive and poten-
tially deleterious metabolites. In these cases, the phrase
"toxication pathways" is used. While these labels may
tell us something about the nature of the products
formed, they do not necessarily describe different
metabolic pathways.
While the actions of many compounds, particularly

some drugs and pesticides, are diminished or eliminated
by metabolism, it is not surprising that the biological
activity of some xenobiotics is increased by the same
process. The persistence of numerous chemicals in the
environment, where they may be exposed to sunlight,
bacteria, extremes of pH, moisture, etc., is a measure
of their chemical stability and, in many cases, is also
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indicative of a lack of direct biological reactivity. Oxida-
tive metabolism can, however, form highly reactive
products from many of these biologically "inert" sub-
stances. The reactive intermediates may then combine
with cellular macromolecules such as proteins (1) or
nucleic acids (2,3) and disrupt vital cellular functions.
The importance of metabolic activation in chemically
induced lung injury has been clearly established (4).
A number of different enzymes and enzyme systems

are involved in the metabolism of xenobiotics, but the
majority of these reactions are catalyzed by the
cytochrome P-450-dependent monooxygenase systems
(P-450 systems). Polycyclic aromatic hydrocarbons, in-
cluding several pulmonary carcinogens, aromatic amines,
fatty acids and steroids, are among the myriad of
chemical classes that provide substrates for cytochrome
P-450-mediated oxidative metabolism.
Cytochrome P-450 catalyzes monooxygenase reac-

tions in which one atom of molecular oxygen is intro-
duced into the substrate and the other goes to form
water. The chemical modifications brought about by this
reaction include N- and O-dealkylation, aromatic and
aliphatic hydroxylation, epoxidation, N-hydroxylation,
and oxidation of thioethers and phosphorothioates.
P-450 systems reside primarily in the endoplasmic
reticulum of cells in a number of tissues. These systems
are comprised of NADPH-cytochrome P-450 reductase,
a flavoprotein, and an undetermined number of iso-
zymes of cytochrome P-450. The substrate specificities
of the P-450 isozymes that have been isolated and
characterized overlap somewhat but, in general, vary
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considerably. This variability and the relative concentra-
tions of individual isozymes may determine that a tissue
or cell can defend itself against certain toxic chemicals
but produce critical concentrations of reactive metabo-
lites from others.
Although the exact complement of P-450 isozymes in

a tissue or cell type cannot be determined by existing
techniques, the occurrence of species, age and tissue
differences, in both the number of isozymes and their
concentrations, is evident. In addition, populations of
P-450 isozymes can be drastically altered by the
inductive, repressive or destructive effects of various
exogenous chemicals. As a consequence of these factors
and others, the catalytic properties of P-450 systems
from various sources can exhibit marked differences.

Pulmonary Cytochrome P-450-
Dependent Monooxygenase Systems

General Considerations
Cytochrome P-450 systems are present in the lungs of

mammals (5) including humans (6,7). That these sys-
tems form reactive metabolites from certain xeno-
biotics can be inferred from the many pulmonary
toxicoses that result from the activation of exogenous
chemicals and from the ability of pulmonary enzymes to
form reactive products from a number of carcinogens,
mutagens and other toxic compounds in vitro (5).
Therefore, it can be said that P-450 systems play a
requisite role in the initiation of a number of pulmonary
diseases including some cancers. The more important
question, however, is whether P-450 systems play any
role in the determination of tissue- or cell-specific
responses to various toxins. Several lines of evidence
suggest that for the lung the answer is no. Cytochrome
P-450-catalyzed metabolism of benzo(a)pyrene (BP), for
example, is much more extensive in the liver, a
nontarget organ for BP-induced carcinogenesis, than in
the lung. Also, the amounts of adducts formed in vivo
between DNA and the proposed ultimate carcinogens
derived from BP (8) are the same in liver and lung of
A/HeJ and ICR/Ha mice, strains that are highly
susceptible to BP-induced pulmonary carcinogenesis (9,
10). Other comparisons of pulmonary and hepatic P-450
systems have produced similar findings. For most
substrates, monooxygenase activity in lung, whether
expressed as total activity or activity per milligram
microsomal protein, is substantially less than that of the
liver. In general, these differences reflect the 6 to 20
times lower concentrations of monooxygenase enzymes
in the lung. From these observations it appears
reasonable to conclude that the specificities of toxic
reactions initiated by P-450-catalyzed metabolism and
confined toally or partially to the lung cannot be
explained by unique properties of pulmonary P-450
systems. Thi-s conclusion is, perhaps, not difficult to
accept when other potential determinants of tissue

specificity for toxic reactions-distribution, uptake,
cell division, DNA repair-are considered. On the
other hand, comparisons of P-450 systems from different
tissues, whether they are based on studies of intact
organs, microsomal fractions or purified enzymes may
not be relevant to the question of tissue specificity.
Arguments derived from these comparisons assume
that the monooxygenase systems are somewhat evenly
distributed throughout the tissues being compared; an
assumption that pertains to both the qualitative and
quantitative properties of the P-450 enzymes. While
this may be at least partially true for the liver, we now
know that the complement of P-450 enzymes in the lung
is quite different from that of the liver and that the
concentrations of pulmonary P-450 systems vary con-
siderably among the pulmonary cell types that have
been examined.

Rabbit Pulmonary Cytochrome P-450
Monooxygenase System

Enzymes and Their Distribution. The best under-
stood pulmonary P-450 system is that of the rabbit.
Cytochrome P-450 isozymes, forms 2 and 5,* make up
greater than 70% of the rabbit pulmonary cytochrome
P-450 (11). In contrast, these isozymes are minor
components of the hepatic system except in rabbits that
have been treated with phenobarbital, an inducer that
has little or no effect on the pulmonary P-450 system.
The identity of the pulmonary isozymes as forms 2 and 5
has been established by direct comparison with the
hepatic enzymes. No structural (molecular weights,
amino acid compositions, N- and C-terminal sequences,
peptide maps), immunochemical (Ouchterlony immuno-
diffusion, Western blotting, inhibition of activity), or
catalytic (substrate specificities in purified and micro-
somal systems) differences between the sets of isozymes
from liver and lung have been detected (11-16). Whether
the microheterogeneous populations of these isozymes
from liver and lung are identical remains to be resolved.
A third P-450 isozyme, form 6, has been detected in
rabbit lung but at very low concentrations relative to
forms 2 and 5 (17). The synthesis of form 6, however, can
be induced by treatment of rabbits with tetrachloro-
dibenzo-p-dioxin (TCDD) (18), polychlorinated biphenyls
(PCBs) (17), or benzo(a)pyrene (BP). Although a
number of isozymes in addition to forms 2, 5, and 6 have
been isolated from rabbit liver (19,20), no direct
evidence for the existence of other isozymes in the lung
is available.
Apparent high concentrations of isozymes 2 and 5

have been detected in the nonciliated bronchiolar

*These forms of cytochrome P-450 were termed P-450I and P-4501I
when they were isolated from rabbit lung. P-450I has since been
determined to be the same as form 2 from the liver. P-4501 has been
identified in liver, and has a monomeric molecular weight that falls
between those of form 4 and form 6. Therefore, in keeping with the
nomenclature used for isozymes of cytochrome P450 in the rabbit,
P-4501 is now called form 5.
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epithelial (Clara) cells of the lower airways of rabbit
lung in tissue sections (21,22) and isolated cells (23).
Positive identification of these isozymes in other cell
types, using immunochemical methods and light micro-
scopy in tissue sections, is difficult. However, both
isozymes have been detected in isolated alveolar Type II
cells, whereas efforts to identify P-450 systems in the
alveolar macrophage have been unsuccessful (23).
Cytochrome P-450-dependent monooxygenase activity
is much greater in preparations from isolated Clara cells
as compared to isolated Type II cells; an apparent
reflection of the difference in enzyme concentrations
(24). Isozyme 6 has been detected in the pulmonary
endothelium in sections of lung from rabbits treated
with TCDD, but not in preparations from untreated
rabbits (25). Similar results were reported for isozyme 4
(25), but we have been unable to detect this isozyme in
pulmonary preparations from rabbits treated with
TCDD, BP or PCBs by techniques that clearly identify
isozyme 6 in pulmonary preparations from untreated
rabbits (unpublished results).

Modulation ofCytochrome P450 Isozymes. One
of the most studied aspects of P-450 systems is the
ability of numerous exogenous chemicals to induce the
synthesis of cytochrome P-450 isozymes. In general,
these inducers are divided into two major classes that
are commonly represented by phenobarbital (PB) and
3-methylcholanthrene (3-MC). PB is thought of as a
more general inducer than 3-MC and, in general, it is. A
number of effects related to treatment of animals with
PB -proliferation of smooth endoplasmic reticulum and
increases in NADPH-cytochrome P-450 reductase, for
example-are not seen with 3-MC. However, both
compounds alter the profile of P-450 isozymes in the
same general way; they induce the synthesis of two or
more isozymes in the liver.
Treatment of adult rabbits with TCDD results in an

increase in the hepatic concentrations of cytochrome
P-450 isozymes, forms 4 and 6 (26). In the lung,
however, only the concentration ofisozyme 6 is increased
by TCDD (18). In fact, we have been unable to detect
isozyme 4 in pulmonary preparations from either
untreated or TCDD-treated rabbits. Treatment of
several animal species with 3-MC-type inducers, in-
cluding 3-MC, TCDD, and BP, brings about at least
three cytochrome P-450-related changes in the prop-
erties of pulmonary microsomal preparations: first, the
metabolism of BP is markedly increased; second, the
cytochrome P-450 content is increased; third, the
maximum of the spectrum of cytochrome P-450 com-
plexed with carbon monoxide shifts from 450 to 448 nm.
These changes are not detected in pulmonary micro-
somal preparations from rabbit and, because of this, we
concluded some time ago that 3-MC and BP had no
effect on the P-450 system of rabbit lung (5). The finding
that treatment of rabbits with TCDD increases the
pulmonary concentration of isozyme 6, lead us to
reinvestigate the effects of BP and it is now clear that
BP, like TCDD, induces the synthesis of isozyme 6 in

rabbit lung and that "P-450III," reported to be a unique
isozyme induced in rabbit lung by 3-MC (27), is also
isozyme 6 (unpublished results).

In contrast to the 3-MC-type inducers, PB has not
been shown to have any notable effect on pulmonary
P-450 systems. (We have observed some increase in the
pulmonary concentration of isozyme 2 following treat-
ment of rabbits with PB, but the increases are marginal
and becomes statistically significant only when the
sample size reaches about thirty.) The lack of effect of
PB on rabbit lung is quite interesting because PB does
increase the hepatic concentrations of isozymes 2 and
5 (28,29). Although PB has no major inductive effect on
the P-450 system of rabbit lung, it does alter the
pulmonary profile of P-450 isozymes. The pulmonary
content of isozyme 6, which is low in untreated rabbits,
is even lower (less than 50% of control) in rabbits
treated with PB. More important, PB blocks the
inductive effective of coplanar isomers of PCBs on
isozyme 6 (17). PCB mixtures (Aroclor 1248, 1254 and
1260) modify the rabbit pulmonary P-450 system in two
ways: first, as mentioned above, the coplanar isomers,
which are 3-MC-type inducers, increase the microsomal
concentration of isozyme 6 (17); second, other isomers
(unidentified at present) markedly decrease the micro-
somal concentration of isozyme 2 (17,30). The decrease
in isozyme 2 can be detected by several immunochemical
methods as well as by loss of activity specific for
isozyme 2.
Pulmonary P-450 systems can also be altered by the

destructive effects of several compounds. For example,
lung-specific destruction of cytochrome P-450 follows
treatment of rats or rabbits with p-xylene (31). The
mechanism of this specific effect (relative to the liver) is
not clear, but the inability of the lung to convert
p-methylbenzaldehyde to p-methylbenzoic acid appears
to be involved (32). p-Xylene is converted to p-methyl-
benzylalcohol by a P-450-catalyzed reaction and is
further metabolized to the aldehyde by alcohol dehydro-
genase. The results of in vitro experiments show that
p-methylbenzaldehyde, NADPH and 02 are required for
the destruction of P-450. Destruction can be brought
about in systems composed of purified NADPH-cyto-
chrome P-450 reductase and cytochrome P-450, a result
that demonstrates the participation of the P-450 system
in the critical reaction. The addition of aldehyde
dehydrogenase to microsomal or purified systems
effectively blocks the destruction of cytochrome P-450
by p-methylbenzaldehyde (32).

Substrate Specificities ofRabbit Pulmonary Iso-
zymes of Cytochrome P450. A number of differences
between the activities of the rabbit hepatic and
pulmonary P-450 systems can now be explained by the
substrate specificities and concentrations of P-450
isozymes in the two tissues. The capacity of the
pulmonary P-450 system to metabolize xenobiotics and
differences between the activities of liver and lung are,
for the most part, functions of isozymes 2 and 5. The
substrate specificities of isozymes 2 and 5 have been

361



PHILPOT AND SMITH

determined in purified systems and confirmed in
microsomal preparations by antibody-inhibition studies
(12,14,33,34). For example, purified isozyme 2 is highly
active in the N-demethylation ofbenzphetamine, where-
as this activity cannot be detected with isozyme 5. In
pulmonary microsomal preparations, over 90% of the
benzphetamine N-demethylation activity is inhibited
by antibodies to isozyme 2; antibodies to isozyme 5 have
no effect on this reaction. Even though isozyme 2 is a
minor form of P-450 in rabbit liver, antibodies to
isozyme 2 inhibit about 50% of the hepatic N-demethyla-
tion of benzphetamine. Thus, the high rate (per nmole
P-450) of benzphetamine metabolism in pulmonary
versus hepatic microsomal preparations is a function of
the difference between the relative proportions of
isozyme 2 in liver and lung and the high activity of
isozyme 2, in comparison with the bulk of the hepatic
cytochrome P-450, with benzphetamine. Treatment of
rabbits with PB results in an increase in hepatic
N-demethylation activity that is consistent with the
induction of isozyme 2. Benzphetamine, along with
ethylmorphine, aminopyrene, 7-ethoxycoumarin and
p-nitroanisole, are examples of substrates that are
metabolized by isozyme 2, but not by isozyme 5. Several
compounds, like 4-ipomeanol and p-xylene, are sub-
strates for both isozymes (35,36). In the case of
4-ipomeanol, this appears to be important in the
pulmonary-specific effects of this toxin (13,34,36). (The
importance of the substrate specificities and localization
of isozymes 2 and 5 in the pulmonary toxicity of
4-ipomeanol is discussed in detail by Boyd elsewhere in
this issue (37). As is the case for isozyme 2, the
metabolism of several xenobiotics by rabbit pulmonary
microsomal preparations is catalyzed only by isozyme 5.
Among these substrates are several aromatic amines
whose metabolism in rabbit pulmonary and hepatic
microsomal preparations has been studied in some
detail.

Differences between rabbit liver and lung in the
metabolism of aromatic amines to mutagenic products
in vitro point out the marked effect that the substrate
specificities and relative concentrations of various
isozymes of cytochrome P-450 can have on metabolic
capacity. At present, these differences cannot be
associated with any pulmonary-specific carcinogenesis
caused by aromatic amines. However, the effect of
aromatic amines on rabbit lung should be thoroughly
investigated before such an association is ruled out.

Microsomal preparations from rabbit lung are 20 to 30
times more active (per nmole cytochrome P-450; about
five times per milligram microsomal protein) than those
from liver in the metabolism of 2-aminofluorene (2-AF)
and 2-aminoanthracene (2-AA) to mutagenic products
(33)., With 2-acetylaminofluorene (2-AAF) as the
substrate, the formation of mutagenic products (per mg
protein) is about the same with either preparation. The
metabolism of all three substrates in lung preparations
is nearly completely inhibited by antibodies to cyto-
chrome P-450, isozyme 5; inhibition in the liver prep-

arations varies between 50 and 70%. The remaining
hepatic activity is probably catalyzed by isozyme 4 (38,
39). In purified systems, isozyme 5 is 15 to 25 times
more active than isozyme 4 with 2-AA or 2-AF as the
substrate (33). The relative activities of isozymes 4 and
5 are consistent with the observed hepatic activity
given that isozyme 5 makes up only about 2% of the
total hepatic P-450 (28), whereas isozyme 4 has been
reported to make up 30% of the total (40). That is to say
that about half of the hepatic activity is catalyzed by a
very small amount of highly active cytochrome. The
high activity of isozyme 5 also explains why the lung
preparations are so much more active than those from
the liver; per mg microsomal protein, there is 5 to 10
times more isozyme 5 in the lung. If these findings
provide an explanation for the difference between liver
and lung for the activation of 2-AF and 2-AA, what
accounts for the results obtained with 2-AAF? Arguing
that isozyme 5 is less active with 2-AAF than with
either 2-AA or 2-AF is not convincing; antibodies to
isozyme 5 inhibit about 50% of the hepatic microsomal
metabolism of 2-AAF to mutagenic products. In spite of
this, it turns out that isozyme 5-catalyzed metabolism
of 2-AAF to the product (N-hydroxy AAF) that leads to
a mutagenic metabolite cannot be detected (41).
The generally accepted pathway for the metabolism

of 2-AAF to mutagenic products is the formation of
N-hydroxy AAF, catalyzed by cytochrome P-450, fol-
lowed by deacetylation to form N-hydroxy AF (42). In
fact, in the rabbit at least, the major pathway is
deacetylation of 2-AAF to form 2-AF followed by
cytochrome P-450-catalyzed N-hydroxylation to form
N-hydroxy AF The substrate for isozyme 5-mediated
activation of a 2-AAF is actually 2-AF The mutagenic
activity of 2-AAF, as compared to 2-AA and 2-AF, in
rabbit pulmonary microsomal preparations is limited by
the deacetylase activity which is only about one-sixth
that of the liver.

Activation vs. Detoxication:
Pulmonary Metabolism of Polycyclic
Aromatic Hydrocarbons
The overall biotransformation ofmany xenobiotics is a

complicated process that may involve three or more
stages of metabolism. Several enzymes, including multi-
ple isozymes of cytochrome P-450, epoxide hydratase,
various conjugating enzymes and transferases, may be
involved with the metabolism of a single substrate and
its products. The order in which these enzymes catalyze
reactions is dependent upon the substrate and can be
quite variable. While both toxic and nontoxic metabo-
lites may be produced by some enzymes, either with the
same or different substrates, other enzymes form
primarily those of the nontoxic variety. The latter,
however, may produce metabolites that can be activated
by further metabolism. Thus, the outcome of metabo-
lism cannot be readily predicted by dividing enzymes
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into two groups, "activators and deactivators," and
determining their relative concentrations and distribu-
tion in a tissue or cell type. The metabolism of polycyclic
aromatic hydrocarbons (PAH) provides a good example
of the complex interactions that can take place among
the various enzymes involved with the biotransforma-
tion of xenobiotics. For polycyclic aromatic hydrocar-
bons and other substrates, the metabolic process may
be further complicated by the involvement ofprostaglan-
din synthase.

In 1950 Boyland (43) predicted that epoxides were
formed during the metabolism of aromatic hydrocar-
bons. This insight came from an analysis of the stable
metabolites produced from aromatic hydrocarbons and
provided an explanation for the alkylation of tissue
macromolecules by these relatively unreactive sub-
stances. Since then, indirect evidence has implicated
epoxides as obligatory intermediates in the formation of
phenolic derivatives from aromatic compounds (44).
More recently, epoxides formed from polycyclic aro-
matic hydrocarbons (PAH) have been isolated and
characterized (45,46).
The metabolism of aliphatic or aromatic carbon-

carbon double bonds, such as those in BP, has been
characterized largely with hepatic preparations; how-
ever, most of the enzyme pathways involved (see Fig. 1)
have also been identified in the lung. Oxidative metabo-
lism of BP by the cytochrome P-450-dependent mono-
oxygenase system results in the formation of epoxides
(44), which may spontaneously rearrange to form hy-
droxylated products (44) or may be converted to
dihydrodiols by epoxide hydratase (47). The epoxide
metabolites also undergo conjugation with glutathione,
a reaction catalyzed by glutathione transferases (48,49).
The conjugates can then be modified by a process known
as mercapturic acid biosynthesis, the sequential re-
moval of amino acid residues from the glutathione
tripeptide, followed by N-acetylation of the residual
cysteine derivative (50). The disposition of the dihydro-
diol metabolites is of particular importance because of
the competition between conjugation reactions with
sulfuric (44) or glucuronic (51) acid and metabolism
catalyzed by the P-450 system to form dihydrodiol

P-450- dependent
monooxygenase

Hydroxylated products
system Binding to cellularconstituents

non- 0
enzymic

Epoxides
/lutathione

hydras /ransferase

Dihydrodiols Glutathione conjugates

Sulfo- UDP-Glucuronosyl
transferase transferase

Sulfate conjugates Glucuronide Mercapturic acids
conjugates

FIGURE 1. Pathways that contribute to the biotransformation of
unsaturated or aromatic hydrocarbons.

epoxides such as the BP 7,8-dihydrodiol-9, 10-oxide
derivatives, which are believed to be the ultimate
carcinogens derived from BP (52,53).
Because the lungs are a target organ for many

airborne PAH, it was anticipated that a relationship
between pulmonary metabolism of these chemicals and
the lung's susceptibility to their carcinogenic effects
might exist. The results of early investigations of this
possible relationship demonstrated that rat pulmonary
microsomal preparations metabolize BP and that the
rate of metabolism is increased nearly 30-fold by prior
exposure to cigarette smoke (54-56). Many other and
more detailed studies of the metabolism of BP by rodent
and human lung microsomal preparations followed, and
these have been summarized in a recent review (57).

Results of investigations of the metabolism of xeno-
biotics by subcellular fractions of rabbit lung demon-
strated a high potential in the microsomal fraction for
the formation of reactive intermediates, but little epox-
ide metabolizing capacity. Metabolism of compounds,
such as biphenyl or aniline, is mediated by rabbit
pulmonary preparations at similar or even greater rates
than by hepatic preparations (58,59). On the other
hand, epoxide hydratase and glutathione transferase
activities in rabbit lung are substantially lower than in
rabbit liver (60). Because distal or peripheral lung (i.e.,
the terminal airways and alveoli) constitutes the bulk of
whole lung homogenates, these findings are consistent
with the report that peripheral rabbit lung is suscepti-
ble to the carcinogenic effects of PAH (61).
The above observations may be relevant to carcinogen-

esis in the rabbit lung, but most human lung tumors
associated with smoking originate from the bronchiolar
epithelium. Therefore, characterization ofPAH metabo-
lism in the bronchiolar epithelium is of obvious impor-
tance. Although microsomes have been prepared from
the bronchiolar epithelium (62,63), the majority of the
studies of PAH metabolism by this fraction of the lung
have been carried out with short-term organ cultures,
which have the advantage of allowing for extended
periods of exposure to the substrate. Rat and hamster
tracheae, which are histologically similar to human
bronchus and are susceptible to PAH-induced tumors,
are ideal for such studies (64,65). The usual experimen-
tal approach is to compare BP metabolism in a suscepti-
ble tissue (bronchus or trachea) versus a nonsusceptible
tissue (peripheral lung or liver). Although many de-
tailed studies, with both rodent and human lung tissue,
have been carried out, no clear relationship between
pulmonary metabolism of BP and the susceptibility of
lung to PAH-induced carcinogenesis has materialized.
Results of a study by Cohen and Moore (66) indicated
that cultured rat and hamster peripheral lung tissue
convert BP to water-soluble derivatives to a much
greater extent than does trachea, but that trachea
forms greater quantities of BP-dihydrodiols. Lung
tissue, but not trachea, was also shown to form phenolic
BP derivatives conjugated with sulfuric acid (67).
Similar results were found with tissue cultures of
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human lung (67). Increased dihydrodiol production
might enhance susceptibility of a tissue to PAH-induced
carcinogenesis because some BP-dihydrodiols are pro-
carcinogens (68), and these findings provided a possible
biochemical basis for PAH sensitivity in the upper
airways. However, it was later demonstrated that either
cultured hamster lung or trachea could convert BP
7,8-dihydrodiol to water-soluble conjugates (69,70).
Furthermore, the conversion of BP to water-soluble
derivatives by cultured rat trachea was increased when
the animals were exposed to cigarette smoke (71).
An alternative approach is to measure the extent to

which BP derivatives covalently bind to DNA. This
binding is believed to be related to the formation of
epoxide metabolites, and it probably plays an important
role in the initiation of malignant transformations (2,3).
Several investigators have demonstrated that BP is
metabolized to products that covalently bind to macro-
molecules in bronchial (72-75) and peripheral lung
(76,77) and that a relationship exists between metabo-
lism and binding. Covalent binding of BP derivatives to
bronchial samples, cultured in the presence of benz(a)-
anthracene (an inducer of monooxygenase activity),
was greater than in bronchial samples that had not been
treated with the inducer (72,73). Covalent binding of BP
derivatives in cultured peripheral lung samples with
high monooxygenase activity was also greater than in
samples with low monooxygenase activity (76,78).
Furthermore, covalent binding of BP to cultured
bronchial mucosa was diminished by 7,8-benzoflavone,
an inhibitor of the metabolism of BP The products
covalently bound to DNA in cultured bronchus were
formed primarily from the metabolism of BP 7,8-
dihydrodiol (79,80); metabolic data indicated that this
was also the case in peripheral lung (76,78,81). These
findings implicated the 7,8-dihydrodiol-9, 10-oxides as
the ultimate carcinogens formed by the metabolism of
BP by human bronchi and peripheral lung, a conclusion
that was strengthened by the identification of BP
diol-epoxide-DNA adducts isolated from peripheral lung
(77) and bronchi (75) cultured in the presence of BR
These findings, coupled with the observation that BP
metabolism is much more rapid in bronchus than in
peripheral lung (78), might be construed as an indica-
tion that the bronchus is a site for tumor formation
because it generates larger quantities of reactive
metabolites and, consequently, forms greater numbers
of DNA adducts. However, it has been shown that
covalent binding of metabolites of BP to DNA in
bronchus and peripheral lung is quantitatively similar
(78). It is also noteworthy that extensive formation of
DNA-BP diol-epoxide adducts occurs in tissues, such as
liver, that are not usually sites for PAH-induced tumor
formation.
Although metabolism clearly plays an important role

in the overall process by which some malignant transfor-
mations are initiated, it may not be a deciding factor in
tissue- or cell-specific responses. However, a critical
analysis of the available data shows that this is far from

certain and that a great deal of work remains to be
done. For example, metabolism and adduct formation in
individual cell types has not been determined. It is
quite possible that significant changes in a small
population of cells can be masked by minor changes in a
much larger population. Results of autoradiographic
studies indicate that BP becomes covalently bound to
most cell types (with the exception of stromal and
mesenchymal cells) in a nonselective manner (73,78).
Unfortunately, such techniques are only marginally
quantitative, and they reveal little about the nature of
the macromolecules that have been assaulted and noth-
ing about the structure of the adducts (73,78). Determi-
nation of the activities of the enzymatic systems that
catalyze the formation and further metabolism of
epoxides in specific pulmonary cell types may result in
some highly relevant findings, since the monooxygenase
and other activities of different pneumocytes vary
considerably (21,23,24).
The metabolism of polycyclic aromatic hydrocarbons

in the lung may be further complicated by prosta-
glandin synthase-catalyzed co-oxidation. Prostaglandin
synthase is a bifunctional enzyme that converts arach-
idonic acid to a hydroperoxy endoperoxide which it then
metabolizes to a hydroxy endoperoxide (82). It is the
hydroperoxidase activity of the enzyme that is involved
with the co-oxidation of xenobiotics. The co-oxidation of
BP by prostaglandin synthase was first demonstrated
with microsomal preparations from ram seminal vesi-
cles (83,84). The activity depends upon the addition of
arachidonic acid to the microsomal incubations. It has
now been shown that pulmonary microsomal prepara-
tions from guinea pig mediate prostaglandin synthase-
dependent co-oxidation of BP, BP 7,8-dihydrodiol and
7,12-dimethylbenzanthracene to products that cova-
lently bind to protein (85). More important, it has been
found that the major product of the co-oxidation of BP
7,8-dihydrodiol by prostaglandin synthase in micro-
somal preparations from ram seminal vesicles or human
lung is BP 7,8,9, 10-tetrahydrotetrol (86,87). The produc-
tion of this metabolite is indicative of the formation of
BP 7,8-dihydrodiol 9,10-oxide as an intermediate in the
co-oxidation pathway. The occurrence of this reaction in
vivo could contribute significantly to the metabolism of
BP to carcinogenic products, particularly in tissues or
cells that have little or no cytochrome P-450-dependent
monooxygenase activity.

Perspective
Without the ability to process and excrete xenobiotics,

most organisms would quickly become stockrooms for a
myriad of natural and synthetic chemicals. Cytochrome
P-450-dependent metabolism is a major part of the
overall process by which this potential is minimized.
With some highly toxic chemicals, the protective effect
of metabolism is more immediate; for example, the
basis for the selection ofmany pesticide-resistant strains
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of insects is more efficient cytochrome P-450-mediated
"detoxication!'

In higher animals, P-450 systems are found in most
organs, but the liver is by far the primary site for the
metabolism of xenobiotics. Extrahepatic metabolism
may serve to minimize storage of exogenous chemicals
and to detoxify others, possibilities that are difficult to
prove. On the other hand, the adverse consequences of
extrahepatic P-450 systems, particularly in lung, are
evident.
At present, our knowledge concerning the biological

functions of pulmonary P-450 systems is quite limited.
We can explain why the Clara cell in some species is a
target for the toxic effects of 4-ipomeanol, but not why
the Clara cells in these species contain relatively high
concentrations of cytochrome P-450. Recent technical
advances will now allow us to classify cytochrome P-450
isozymes in lung, map their distribution, and deter-
mine their potential metabolic consequences. Perhaps
this information will help provide some answers to the
questions of why P-450 systems are present in the lung
and why such great cellular and species diversity exists
among pulmonary cytochrome P-450 systems.
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